Checking positive definiteness or stability of symmetric interval matrices is NP-hard

Jirí Rohn*
Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 11800 Prague 1, Czech Republic

Abstract

It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.

Key words. positive definiteness, stability, nonsingularity, NP-hardness
AMS subject classifications. 15A48, 15A18, 68Q25
As is well known, a square (not necessarily symmetric) matrix A is called positive definite if $x^{T} A x>0$ for each $x \neq 0$, stable if $\operatorname{Re} \lambda<0$ for each eigenvalue λ of A, and Schur stable if $\varrho(A)<1$. We prove here that checking these properties is NP-hard (see $[1])$ for a symmetric interval matrix $A^{I}=[\underline{A}, \bar{A}]:=\{A ; \underline{A} \leq A \leq \bar{A}\}$. By definition, A^{I} is called symmetric if both \underline{A} and \bar{A} are symmetric; hence, a symmetric A^{I} may contain nonsymmetric matrices. If A^{I} is symmetric and $A \in A^{I}$, then $\frac{1}{2}\left(A+A^{T}\right) \in A^{I}$. Let $\lambda_{\min }(A)$ denote the minimal eigenvalue of a symmetric matrix A. We have these results:

Theorem 1 For a symmetric interval matrix A^{I} with rational bounds, each of the following problems is NP-hard:
(i) check whether each $A \in A^{I}$ is positive definite,
(ii) check whether each symmetric $A \in A^{I}$ is positive definite,
(iii) check whether each $A \in A^{I}$ is stable,
(iv) check whether each symmetric $A \in A^{I}$ is stable,
(v) check whether each $A \in A^{I}$ is nonsingular,

[^0](vi) check whether each symmetric $A \in A^{I}$ is nonsingular,
(vii) check whether each symmetric $A \in A^{I}$ is Schur stable,
(viii) given rational numbers $a, b, a<b$, check whether $\lambda_{\min }(A) \in(a, b)$ for each symmetric $A \in A^{I}$.

Proof. Let us call a symmetric real $n \times n$ matrix $A=\left(a_{i j}\right)$ an MC-matrix if $a_{i i}=n$ and $a_{i j} \in\{0,-1\}$ for $i \neq j(i, j=1, \ldots, n)$. Then for each $x \neq 0$ we have $x^{T} A x \geq n\|x\|_{2}^{2}-\sum_{i \neq j}\left|x_{i} x_{j}\right|=(n+1)\|x\|_{2}^{2}-\|x\|_{1}^{2} \geq\|x\|_{2}^{2}>0$, hence A is positive definite (and so is A^{-1}). For an MC-matrix A and a positive integer L, let us form three symmetric interval matrices

$$
\begin{aligned}
A^{I} & =\left[A^{-1}-\frac{1}{L} e e^{T}, A^{-1}+\frac{1}{L} e e^{T}\right], \\
A_{0}^{I} & =\left[-A^{-1}-\frac{1}{L} e e^{T},-A^{-1}+\frac{1}{L} e e^{T}\right]
\end{aligned}
$$

and

$$
A_{1}^{I}=\left[I+\frac{1}{m}\left(-A^{-1}-\frac{1}{L} e e^{T}\right), I+\frac{1}{m}\left(-A^{-1}+\frac{1}{L} e e^{T}\right)\right],
$$

where $e=(1,1, \ldots, 1)^{T}, I$ is the unit matrix and $m=\left\|A^{-1}\right\|_{\infty}+\frac{n}{L}+1$. Hence, $A_{0}^{I}=\left\{-A ; A \in A^{I}\right\}, A_{1}^{I}=\left\{I+\frac{1}{m} A ; A \in A_{0}^{I}\right\}$ and $\varrho\left(A^{\prime}\right) \leq\left\|A^{\prime}\right\|_{\infty}<m$ for each $A^{\prime} \in A^{I}$. We shall prove that the following assertions are mutually equivalent:
0) $z^{T} A z \geq L$ for some $z \in\{-1,1\}^{n}$,

1) A^{I} contains a matrix which is not positive definite,
2) A^{I} contains a symmetric matrix which is not positive definite,
3) A_{0}^{I} contains an unstable matrix,
4) A_{0}^{I} contains a symmetric unstable matrix,
5) A^{I} contains a singular matrix,
6) A^{I} contains a symmetric singular matrix,
7) A_{1}^{I} contains a symmetric matrix which is not Schur stable,
8) $\lambda_{\text {min }}\left(A^{\prime}\right) \notin(0, m)$ for some symmetric $A^{\prime} \in A^{I}$.

We prove 0$) \Rightarrow 6) \Rightarrow 2) \Rightarrow 8) \Rightarrow 2) \Rightarrow 4) \Rightarrow 7(\Rightarrow 4) \Rightarrow 3) \Rightarrow 1) \Rightarrow 5) \Rightarrow 0) .0) \Rightarrow 6$): If $z^{T} A z \geq L$ for some $z \in\{-1,1\}^{n}$, then the matrix $A^{\prime}=A^{-1}-\left(z^{T} A z\right)^{-1} z z^{T}$ is symmetric, belongs to A^{I} and satisfies $A^{\prime} A z=0$, hence it is singular. 6) $\Rightarrow 2$) is obvious. 2) $\Leftrightarrow 8$): For a symmetric $A^{\prime} \in A^{I}$, since $\varrho\left(A^{\prime}\right)<m$, we have that A^{\prime} is not positive definite if and only if $\left.\left.\lambda_{\min }\left(A^{\prime}\right) \notin(0, m) .2\right) \Rightarrow 4\right)$: If a symmetric
$A^{\prime} \in A^{I}$ is not positive definite, then $\lambda_{\max }\left(-A^{\prime}\right)=-\lambda_{\min }\left(A^{\prime}\right) \geq 0$, hence $-A^{\prime}$ is unstable and $-A^{\prime} \in A_{0}^{I}$. 4) $\Leftrightarrow 7$): For each symmetric $A^{\prime} \in A_{0}^{I}$, since $\varrho\left(A^{\prime}\right)<m$, we have that A^{\prime} is unstable if and only if $I+\frac{1}{m} A^{\prime} \in A_{1}^{I}$ is not Schur stable. 4) $\Rightarrow 3$) is obvious. 3) $\Rightarrow 1$): If $\tilde{A} \in A_{0}^{I}$ is unstable, then by Bendixson theorem $0 \leq \operatorname{Re} \lambda \leq$ $\lambda_{\max }\left(\frac{1}{2}\left(\tilde{A}+\tilde{A}^{T}\right)\right)$, hence for $A^{\prime}=-\frac{1}{2}\left(\tilde{A}+\tilde{A}^{T}\right)$ we have $A^{\prime} \in A^{I}$ and $\lambda_{\min }\left(A^{\prime}\right) \leq 0$, so that A^{\prime} is not positive definite. 1$) \Rightarrow 5$): Let $\tilde{A} \in A^{I}$ be not positive definite. Put $t_{0}=\sup \left\{t \in[0,1] ; A^{-1}+t\left(\frac{1}{2}\left(\tilde{A}+\tilde{A}^{T}\right)-A^{-1}\right)\right.$ is positive definite $\}$. Then the matrix $A^{\prime}=A^{-1}+t_{0}\left(\frac{1}{2}\left(\tilde{A}+\tilde{A}^{T}\right)-A^{-1}\right)$ is symmetric, belongs to A^{I} (due to its convexity) and is positive semidefinite, but not positive definite, hence $\lambda_{\min }\left(A^{\prime}\right)=0$, so that A^{\prime} is singular. 5) $\Rightarrow 0)$: Let $A^{\prime} x=0$ for some $A^{\prime} \in A^{I}, x \neq 0$. Define $z \in\{-1,1\}^{n}$ by $z_{j}=1$ if $x_{j} \geq 0$ and $z_{j}=-1$ otherwise $(j=1, \ldots, n)$. Then $e^{T}|x|=z^{T} x=$ $z^{T} A\left(A^{-1}-A^{\prime}\right) x \leq\left|z^{T} A\right| \frac{1}{L} e e^{T}|x|$, which implies $L \leq\left|z^{T} A\right| e=z^{T} A z$ (since A is diagonally dominant). This proves that the assertions 0) to 8) are equivalent. Now, in [3, Theorem 2.6] it is proved that the decision problem

Instance. An MC-matrix A and a positive integer L.
Question. Is $z^{T} A z \geq L$ for some $z \in\{-1,1\}^{n}$?
is NP-complete. In view of the above equivalences, this problem can be polynomially reduced to each of the problems (i)-(viii), hence all of them are NP-hard.

Comments. The result (v) was proved in [3, Theorem 2.8]; here it was included for completeness. Cf. also Nemirovskii's results in [2]. Characterizations of positive definiteness, stability and Schur stability of symmetric interval matrices are given in [4].

References

[1] Garey M.E., Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979
[2] Nemirovskii A., Several NP-hard problems arising in robust stability analysis, Math. of Control, Signals, and Systems 6(1993), 99-105
[3] Poljak S. and Rohn J., Checking robust nonsingularity is NP-hard, Math. of Control, Signals, and Systems 6(1993), 1-9
[4] Rohn J., Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl. 15(1994), 175-184

[^0]: *This work was supported by the Charles University Grant Agency under grant GAUK 237.

