Checking positive definiteness or stability of symmetric interval matrices is NP-hard

Jiří Rohn^{*}

Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic

Abstract

It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.

Key words. positive definiteness, stability, nonsingularity, NP-hardness

AMS subject classifications. 15A48, 15A18, 68Q25

As is well known, a square (not necessarily symmetric) matrix A is called positive definite if $x^T A x > 0$ for each $x \neq 0$, stable if $\operatorname{Re} \lambda < 0$ for each eigenvalue λ of A, and Schur stable if $\varrho(A) < 1$. We prove here that checking these properties is NP-hard (see [1]) for a symmetric interval matrix $A^I = [\underline{A}, \overline{A}] := \{A; \underline{A} \leq A \leq \overline{A}\}$. By definition, A^I is called symmetric if both \underline{A} and \overline{A} are symmetric; hence, a symmetric A^I may contain nonsymmetric matrices. If A^I is symmetric and $A \in A^I$, then $\frac{1}{2}(A + A^T) \in A^I$. Let $\lambda_{\min}(A)$ denote the minimal eigenvalue of a symmetric matrix A. We have these results:

Theorem 1 For a symmetric interval matrix A^{I} with rational bounds, each of the following problems is NP-hard:

- (i) check whether each $A \in A^{I}$ is positive definite,
- (ii) check whether each symmetric $A \in A^{I}$ is positive definite,
- (iii) check whether each $A \in A^{I}$ is stable,
- (iv) check whether each symmetric $A \in A^{I}$ is stable,
- (v) check whether each $A \in A^{I}$ is nonsingular,

^{*}This work was supported by the Charles University Grant Agency under grant GAUK 237.

- (vi) check whether each symmetric $A \in A^{I}$ is nonsingular,
- (vii) check whether each symmetric $A \in A^{I}$ is Schur stable,
- (viii) given rational numbers a, b, a < b, check whether $\lambda_{\min}(A) \in (a, b)$ for each symmetric $A \in A^{I}$.

Proof. Let us call a symmetric real $n \times n$ matrix $A = (a_{ij})$ an MC-matrix if $a_{ii} = n$ and $a_{ij} \in \{0, -1\}$ for $i \neq j$ (i, j = 1, ..., n). Then for each $x \neq 0$ we have $x^T A x \ge n \|x\|_2^2 - \sum_{i \neq j} |x_i x_j| = (n+1) \|x\|_2^2 - \|x\|_1^2 \ge \|x\|_2^2 > 0$, hence A is positive definite (and so is A^{-1}). For an MC-matrix A and a positive integer L, let us form three symmetric interval matrices

$$A^{I} = \left[A^{-1} - \frac{1}{L}ee^{T}, A^{-1} + \frac{1}{L}ee^{T}\right],$$

$$A^{I}_{0} = \left[-A^{-1} - \frac{1}{L}ee^{T}, -A^{-1} + \frac{1}{L}ee^{T}\right]$$

and

$$A_1^I = \left[I + \frac{1}{m}(-A^{-1} - \frac{1}{L}ee^T), I + \frac{1}{m}(-A^{-1} + \frac{1}{L}ee^T)\right],$$

where $e = (1, 1, ..., 1)^T$, I is the unit matrix and $m = ||A^{-1}||_{\infty} + \frac{n}{L} + 1$. Hence, $A_0^I = \{-A; A \in A^I\}, A_1^I = \{I + \frac{1}{m}A; A \in A_0^I\}$ and $\varrho(A') \leq ||A'||_{\infty} < m$ for each $A' \in A^I$. We shall prove that the following assertions are mutually equivalent:

- 0) $z^T A z \ge L$ for some $z \in \{-1, 1\}^n$,
- 1) A^{I} contains a matrix which is not positive definite,
- 2) A^{I} contains a symmetric matrix which is not positive definite,
- 3) A_0^I contains an unstable matrix,
- 4) A_0^I contains a symmetric unstable matrix,
- 5) A^I contains a singular matrix,
- 6) A^I contains a symmetric singular matrix,
- 7) A_1^I contains a symmetric matrix which is not Schur stable,
- 8) $\lambda_{\min}(A') \notin (0,m)$ for some symmetric $A' \in A^I$.

We prove $0 \Rightarrow 6 \Rightarrow 2 \Rightarrow 8 \Rightarrow 2 \Rightarrow 4 \Rightarrow 7 \Rightarrow 4 \Rightarrow 3 \Rightarrow 1 \Rightarrow 5 \Rightarrow 0$. $0 \Rightarrow 6$: If $z^T Az \ge L$ for some $z \in \{-1, 1\}^n$, then the matrix $A' = A^{-1} - (z^T Az)^{-1} z z^T$ is symmetric, belongs to A^I and satisfies A'Az = 0, hence it is singular. $6 \Rightarrow 2$ is obvious. 2) $\Leftrightarrow 8$: For a symmetric $A' \in A^I$, since $\varrho(A') < m$, we have that A'is not positive definite if and only if $\lambda_{\min}(A') \notin (0,m)$. 2) $\Rightarrow 4$: If a symmetric $A' \in A^I$ is not positive definite, then $\lambda_{\max}(-A') = -\lambda_{\min}(A') \ge 0$, hence -A' is unstable and $-A' \in A_0^I$. 4) \Leftrightarrow 7): For each symmetric $A' \in A_0^I$, since $\varrho(A') < m$, we have that A' is unstable if and only if $I + \frac{1}{m}A' \in A_1^I$ is not Schur stable. 4) \Rightarrow 3) is obvious. 3) \Rightarrow 1): If $\tilde{A} \in A_0^I$ is unstable, then by Bendixson theorem $0 \le \operatorname{Re} \lambda \le$ $\lambda_{\max}(\frac{1}{2}(\tilde{A} + \tilde{A}^T))$, hence for $A' = -\frac{1}{2}(\tilde{A} + \tilde{A}^T)$ we have $A' \in A^I$ and $\lambda_{\min}(A') \le 0$, so that A' is not positive definite. 1) \Rightarrow 5): Let $\tilde{A} \in A^I$ be not positive definite. Put $t_0 = \sup \left\{ t \in [0,1]; A^{-1} + t(\frac{1}{2}(\tilde{A} + \tilde{A}^T) - A^{-1}) \text{ is positive definite} \right\}$. Then the matrix $A' = A^{-1} + t_0(\frac{1}{2}(\tilde{A} + \tilde{A}^T) - A^{-1})$ is positive definite, but not positive definite, hence $\lambda_{\min}(A') = 0$, so that A'is singular. 5) \Rightarrow 0): Let A'x = 0 for some $A' \in A^I$, $x \neq 0$. Define $z \in \{-1,1\}^n$ by $z_j = 1$ if $x_j \ge 0$ and $z_j = -1$ otherwise $(j = 1, \dots, n)$. Then $e^T |x| = z^T x =$ $z^T A(A^{-1} - A')x \le |z^T A|\frac{1}{L}ee^T|x|$, which implies $L \le |z^T A|e = z^T Az$ (since A is diagonally dominant). This proves that the assertions 0) to 8) are equivalent. Now, in [3, Theorem 2.6] it is proved that the decision problem

Instance. An MC-matrix A and a positive integer L.

Question. Is $z^T A z \ge L$ for some $z \in \{-1, 1\}^n$?

is NP-complete. In view of the above equivalences, this problem can be polynomially reduced to each of the problems (i)–(viii), hence all of them are NP-hard. ■

Comments. The result (v) was proved in [3, Theorem 2.8]; here it was included for completeness. Cf. also Nemirovskii's results in [2]. Characterizations of positive definiteness, stability and Schur stability of symmetric interval matrices are given in [4].

References

- Garey M.E., Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979
- [2] Nemirovskii A., Several NP-hard problems arising in robust stability analysis, Math. of Control, Signals, and Systems 6(1993), 99–105
- [3] Poljak S. and Rohn J., Checking robust nonsingularity is NP-hard, Math. of Control, Signals, and Systems 6(1993), 1–9
- [4] Rohn J., Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl. 15(1994), 175–184