A NOTE ON SOLVING EQUATIONS OF TYPE $A^I x^I = b^I$

by

J. Rohn, Prague

Let $A^I = \begin{bmatrix} A_0 - \Delta & A_0 + \Delta \end{bmatrix}$ be a regular $n \times n$ interval matrix and let $b^I = \begin{bmatrix} b_1 & b_2 \end{bmatrix}$ be an interval n-vector. In this note we show that the problem of finding an interval n-vector x^I such that $A^I x^I = b^I$ (where the left-hand multiplication is performed in interval arithmetic) can be rather easily solved if we impose an additional restriction on the concept of solution.

Definition. An interval n-vector x^I is called a strong solution if $A^I x^I = b^I$ and, moreover, if there exist $x_1, x_2 \in x^I$ such that $A_1 x_1 = b_1$, $A_2 x_2 = b_2$ for some $A_1, A_2 \in A^I$.

We shall show that the problem of finding a strong solution or verifying that no such solution exists can be solved by the following simple algorithm:

Algorithm.

0. Solve the equations $A_0 x_1 - \Delta |x_1| = b_1$, $A_0 x_2 + \Delta |x_2| = b_2$.

1. Construct $\mathcal{X}^I = \{x_1, x_2\}$, where $x_j = \min\{x_1, x_2\}$,

 $x_j = \max\{x_1, x_2\}$, $j = 1, \ldots, n$.

2. If $A^I \mathcal{X}^I = b^I$, stop! \mathcal{X}^I is a strong solution.

3. Otherwise stop! No strong solution exists.

Since A^I is regular, each of the two equations described in step 0 has a unique solution, as proved in [4]. Since $|x_i| = T_z x_i$ for some diagonal matrix T_z satisfying $|T_z| = E$, we have $(A_0 - \Delta T_z) x_1 = b_1$, where $A_0 - \Delta T_z \in A^I$.

ANS Subject Classification: 65G10
similarly for \(x_2 \). Hence if \(A^I x^I = b^I \), then \(x^I \) is a strong solution (since \(x_1, x_2 \in \mathcal{Z}^I \)). To justify step 3, we prove this result:

Theorem. Let \(A^I \) be regular and let \(A^I x^I = b^I \) have a strong solution. Then \(x^I \) is also a strong solution.

Proof. Let \(x^I \) be a strong solution. Then \(A_1 x_1^* = b \), \(A_2 x_2^* = b \) for some \(x_1^* \), \(x_2^* \in \mathcal{Z}^I \), \(A_1, A_2 \in \mathcal{A}^I \). Due to the Ottiti-Prager theorem, we have \(\{ A x^I : A \in \mathcal{A}^I \} = \{ A_1 x_1^* - A_2 x_2^* \} \) implies \(A_1 x_1^* = A_2 x_2^* = b \) and the above-mentioned uniqueness of solution gives \(x_1^* = x_1 \). In a similar way we obtain \(x_2^* = x_2 \); hence \(x^I \subset x^I \). Now we have \(b^I \subset A^I x^I \subset A^I x^I = b^I \), \(b = A_1 x_1 \), \(b = A_2 x_2 \), hence \(x^I \) is a strong solution.

We shall briefly sum up some methods for solving the equation \(A_0 x_1^* - A|x_1^*| = b \) (similarly for \(A_0 x_2 + A|x_2| = b \)). As described in [3], we have these options:

(a) to solve the linear complementarity problem
\[
x_1^* = (A_0 - \Delta)^{-1}((A_0 + \Delta)x_1^* + (A_0 - \Delta)^{-1}b)
\]
(b) to solve the system \((A_0 - \Delta T_z)x = b\) until \(T_z x \geq 0 \); if \(T_z x \) is not nonnegative in the current step, we set \(z_k = -z_k \), where \(k = \min \{ j : z_j x_j \leq 0 \} \) and return \((T_z \text{ is a diagonal matrix with diagonal elements } z_1^*, \ldots, z_n^*)\);
(c) to solve the fixed-point equation \(x_1 = A_0^{-1} \Delta |x_1^*| + A_0^{-1} b \) by Banach iterations \(x^{m+1} = A_0^{-1} \Delta |x^m| + \)

\[a \sigma a \quad \text{and} \quad a \sigma b \quad \Rightarrow \quad a \sigma c \]

+ \[a^{-1} b \quad \text{we have} \quad x^* \rightarrow x \quad \text{provided} \]
\[J(a^{-1} d) < 1. \]

Example 1 (Hansen [2]). The system
\[
\begin{align*}
(2,3) x_1 + (0,1) x_2 &= (0, 120) \\
(1,2) x_1 + (2,3) x_2 &= (60, 240)
\end{align*}
\]

has a unique strong solution \(x^T = [5, 3] \), where \(x = (0, 17, 1429)^T \).

Example 2 (Barth, Nuding [1]). The system
\[
\begin{align*}
(2,4) x_1 + (1,2) x_2 &= (5, 22) \\
(-1,2) x_1 + (2,4) x_2 &= (-2, 2)
\end{align*}
\]

has no strong solution.

References

Author's address: J. Rohn, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Prague, Czechoslovakia