Short communication

A note on solvability of a class of linear complementarity problems

Jiri Rohn

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Received 29 July 1991
Revised manuscript received 21 February 1992

We give a characterization of unique solvability of an infinite family of linear complementarity problems of a special form by means of a finite subset of this family.

Key words: Linear complementarity problem, nonsingular matrix, P-matrix.

A linear complementarity problem is a problem of the form

\[y = Mz + q \]
\[y \geq 0, \quad z \geq 0, \]
\[y^Tz - 0, \]

where \(M \) is an \(n \times n \) matrix and \(q \) an \(n \)-dimensional vector; we shall denote this problem by \(\text{LCP}(M, q) \). A detailed exposition of the linear complementarity theory may be found in Murty’s book [1]. In this note we apply some recent results on systems of linear equations with inexact data [2] to obtain some necessary and sufficient conditions for unique solvability of a whole class of linear complementarity problems of the form \(\text{LCP}(M_1^{-1}M_2, q) \) with \(A \leq M_1 \leq B \) and \(A \leq M_2 \leq B \), where \(A \) and \(B \) are two given \(n \times n \) matrices and \(q \in \mathbb{R}^n \). (Here, as in the sequel, matrix and vector inequalities are understood componentwise and the inverse of a matrix \(M \) is assumed to exist whenever the symbol \(M^{-1} \) is used.)

Before formulating the main result we introduce some notations. A diagonal matrix \(S \) is said to be a signature matrix if each of its diagonal elements is equal to 1 or \(-1\), clearly there are \(2^n \) signature matrices of size \(n \), among them the unit matrix \(I \). Let \(A, B \) be two \(n \times n \) matrices, \(A \leq B \), and let \(S \) be a signature matrix of the same size. We introduce the matrix

Correspondence to: Jiri Rohn, Faculty of Mathematics and Physics, Charles University, Malostranske nam. 25, 11800 Prague, Czech Republic.
\[M_S = K_S^{-1} L_S \]

where

\[K_S = \frac{1}{2}(I + S)A + \frac{1}{2}(I - S)B \]

and

\[L_S = \frac{1}{2}(I - S)A + \frac{1}{2}(I + S)B. \]

Since \(S \) is a signature matrix, each element of \(K_S \) is equal to the respective element of either \(A \) or \(B \), which implies \(A \leq K_S \leq B \); the same holds for \(L_S \). Further let

\[q_S = K_S^{-1} Se \]

where \(e = (1, 1, \ldots, 1)^T \). Let us recall that a square matrix is called a \(P \)-matrix if all its principal minors are positive.

Now we have this result:

Theorem. Let \(A, B \) be two \(n \times n \) matrices, \(A \leq B \). Then the following assertions are equivalent:

1. Each matrix \(C \) satisfying \(A \leq C \leq B \) is nonsingular.
2. The LCP(\(M_1^{-1}M_2 \), \(q \)) has a unique solution for all matrices \(M_1, M_2 \) satisfying \(A \leq M_1 \leq B \), \(A \leq M_2 \leq B \), and each right-hand side vector \(q \).
3. The LCP(\(M_S \), \(q_S \)) has a solution for each signature matrix \(S \).
4. The system
 \[
 \begin{align*}
 y &= M_S z + q_S, \\
 y \geq 0, \quad z \geq 0,
 \end{align*}
 \]

has a solution for each signature matrix \(S \).

5. \(M \) is a \(P \)-matrix for each signature matrix \(S \).

Proof. (i) \(\Rightarrow \) (ii), (i) \(\Rightarrow \) (v): If (i) holds, then according to Theorem 1.2 in [2], each matrix of the form \(M_1^{-1}M_2 \), where \(A \leq M_1 \leq B \) and \(A \leq M_2 \leq B \), is a \(P \)-matrix. This proves (v) due to the definition of \(M_S \) and also implies (ii) in view of the well-known result on unique solvability of a linear complementarity problem LCP(\(M \), \(q \)) with a \(P \)-matrix \(M \), see [1].

(ii) \(\Rightarrow \) (iii) follows from the fact that \(M_S \) is of the form \(M_S = K_S^{-1} L_S \), where \(A \leq K_S \leq B \) and \(A \leq L_S \leq B \).

(iii) \(\Rightarrow \) (iv) is obvious since the solution of LCP(\(M_S \), \(q_S \)) also solves the system (1).

(iv) \(\Rightarrow \) (i): If \(y, z \) solve (1), then they satisfy the system

\[
\begin{align*}
K_S y - L_S z &= Se, \\
y \geq 0, \quad z \geq 0.
\end{align*}
\]
According to the assertion (A2) of Theorem 5.1 in [2], the existence of a solution to a system (2) for an arbitrary signature matrix S implies the nonsingularity of each matrix C satisfying $A \preceq C \preceq B$.

$(v) \Rightarrow (i)$: Follows from the assertion (B1) of Theorem 5.1 in [2]. □

The merit of this result is the fact that unique solvability of an infinite family of linear complementarity problems
\[\text{LCP}(M^{-1}_1 M_2, q), \]
\[A \preceq M_1 \preceq B, \]
\[A \preceq M_2 \preceq B, \]
\[q \in \mathbb{R}^n, \]

can be characterized by means of a finite subset of this family (equivalence (ii)\iff(iii)). But even more, as the assertion (iv) shows, the existence of nonnegative solutions to a finite number of systems of linear equations of the type (1) (where the complementarity constraint is dropped) is sufficient for unique solvability of each problem in the family (3); however, the number of test problems is exponential in matrix size. Nevertheless, there exists a verifiable sufficient condition: if
\[\rho \left(|2I - Q(A + B)| + |Q|(B - A) \right) < 2 \]
holds for some (but arbitrary) $n \times n$ matrix Q (where ρ is the spectral radius and $| \cdot |$ denotes the absolute value of a matrix), then each matrix C satisfying $A \preceq C \preceq B$ is nonsingular [3], hence each problem in the family (3) is uniquely solvable. As explained in [3], for practical verification it is recommended to choose Q as the computed value of $(\frac{1}{2}(A + B))^{-1}$. Notice also that if (3) contains a problem which is not uniquely solvable, then there exists a signature matrix S such that either K_S is singular, or $\text{LCP}(M_S, q_S)$ does not possess a solution (assertion (iii)).

Linear complementarity problems of the form $\text{LCP}(M^{-1}_1 M_2, q), A \preceq M_1 \preceq B, A \preceq M_2 \preceq B$ arise naturally in solving systems of linear equations with inexact data; see [2] for details.

References

