A not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices

Vahideh Hooshyarbakhsh, Raena Farhadsefat and Jiri Rohn

Technical report No. V-1147

02.01.2012
A not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices

Vahideh Hooshyarbakhsh¹, Raena Farhadsefat² and Jiri Rohn³

Technical report No. V-1147

02.01.2012

Abstract:

We describe a not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices which is an easy consequence of an earlier result on interval linear equations.

Keywords:
Interval matrix, regularity, necessary and sufficient condition.

¹Department of Applied Mathematics and Computer Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: vhoshiar@iauh.ac.ir.
²Young Researchers Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: rfarhad@iauh.ac.ir.
³Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic, e-mail: rohn@cs.cas.cz. This author’s work was supported by the Institutional Research Plan AV0Z10300504.

⁴Above: logo of interval computations and related areas (depiction of the solution set of the system \([2, 4]x_1 + [-2, 1]x_2 = [-2, 2], [-1, 2]x_1 + [2, 4]x_2 = [-2, 2]\) (Barth and Nuding [11]).
Checking regularity of interval matrices is a known NP-hard problem. Forty necessary and sufficient regularity conditions are summed up in [2]; all of them are exponential because they explicitly or implicitly contain the quantifier “for each $z \in \{-1, 1\}^n$”. The condition given below is, to these authors’ knowledge, the first ever published not-a-priori-exponential regularity condition because instead of $\{-1, 1\}^n$ it employs only a subset Z of it. Cardinality of the set Z varies with the data, but its minimal value is 1. Notation used: e_j is the jth column of the $n \times n$ identity matrix, $e = (1, 1, \ldots, 1)^T \in \mathbb{R}^n$, diag($z$) is the $n \times n$ diagonal matrix with diagonal vector z and for an $x \in \mathbb{R}^n$, sgn(x) is defined by (sgn(x))$_i = 1$ if $x_i \geq 0$ and (sgn(x))$_i = -1$ otherwise.

Theorem 1. An $n \times n$ interval matrix $A = [A_c - \Delta, A_c + \Delta]$ is regular if and only if A_c is nonsingular and there exists a subset Z of $\{-1, 1\}^n$ having the following properties:

(a) $\text{sgn}(A_c^{-1}e) \in Z$,

(b) for each $z \in Z$ the inequalities

$$
(QA_c - I) \text{ diag}(z) \geq |Q|\Delta, \quad \text{(0.1)}
$$

$$
(QA_c - I) \text{ diag}(-z) \geq |Q|\Delta \quad \text{(0.2)}
$$

have matrix solutions Q_z and Q_{-z}, respectively,

(c) if $z \in Z$, $Q_z e \leq Q_{-z} e$, and $(Q_{-z} e)_j(Q_z e)_j \leq 0$ for some j, then $z - 2z_j e_j \in Z$.

Proof. “If”: The assumptions (a)-(c) imply that the three assumptions of Theorem 3 in [3] are met for the system of interval linear equations $Ax = [e, e]$ whose solution set in virtue of the same theorem is bounded, hence A is regular. “Only if”: If A is regular, then (a) and (c) are satisfied for $Z = \{-1, 1\}^n$ and for each $z \in \{-1, 1\}^n$ the equations

$$
(QA_c - I) \text{ diag}(z) = |Q|\Delta,
$$

$$
(QA_c - I) \text{ diag}(-z) = |Q|\Delta
$$

have (even unique) solutions, see [2].

Hence we can also formulate the theorem in the following way:

Theorem 2. An $n \times n$ interval matrix $A = [A_c - \Delta, A_c + \Delta]$ is regular if and only if A_c is nonsingular and there exists a subset Z of $\{-1, 1\}^n$ having the following properties:

(a) $\text{sgn}(A_c^{-1}e) \in Z$,

(b) for each $z \in Z$ the equations

$$
(QA_c - I) \text{ diag}(z) = |Q|\Delta, \quad \text{(0.3)}
$$

$$
(QA_c - I) \text{ diag}(-z) = |Q|\Delta \quad \text{(0.4)}
$$

have matrix solutions Q_z and Q_{-z}, respectively,

(c) if $z \in Z$, $Q_z e \leq Q_{-z} e$, and $(Q_{-z} e)_j(Q_z e)_j \leq 0$ for some j, then $z - 2z_j e_j \in Z$.

Notice that if $z \in \{-1, 1\}^n$, then $z - 2z_j e_j \in \{-1, 1\}^n$ (in (c)), so that $Z \subseteq \{-1, 1\}^n$; thus Z is defined recursively by (a) and (c). In practical computations, equations (0.3), (0.4) are solved instead of inequalities (0.1), (0.2) as it was done in the function `qzmatrix`, using the subfunction `absvaleqn`, in [4].
Bibliography

