Generalization of a Theorem on Eigenvalues of Symmetric Matrices

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1271

22.07.2019
Generalization of a Theorem on Eigenvalues of Symmetric Matrices

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1271
22.07.2019

Abstract:
We prove that the product of a symmetric positive semidefinite matrix and a symmetric matrix has all eigenvalues real.

Keywords:
Symmetric matrix, positive semidefinite matrix, real spectrum.

\footnote{1}{This work was supported with institutional support RVO:67985807.}
\footnote{2}{Above: Logo of interval computations and related areas (depiction of the solution set of the system \([2, 4]x_1 + [-2, 1]x_2 = [-2, 2], [-1, 2]x_1 + [2, 4]x_2 = [-2, 2]\) (Barth and Nuding [1])).}
A real matrix has complex eigenvalues in general. Yet there is a well-known important exception:

Theorem 1. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ has all eigenvalues real.

In this note we prove a generalization of this result and we show a way how to construct generally nonsymmetric matrices having real eigenvalues only.

Theorem 2. If $A, B \in \mathbb{R}^{n \times n}$ are symmetric matrices of which at least one is positive semidefinite, then AB has all eigenvalues real.

Proof. (a) First, let A be positive semidefinite. Put $C = A^{1/2}$, so that C is the unique symmetric positive semidefinite real matrix satisfying $C^2 = A$ (Horn and Johnson [2, Thm. 7.2.6]). Then

$$AB = C^2B = CC^TB = C(C^TB)$$

and since $C(C^TB)$ and $(C^TB)C$ have the same spectrum (Horn and Johnson [2, Thm. 1.3.20]), the eigenvalues of AB and $(C^TB)C$ are equal, hence it suffices to prove that C^TBC has all eigenvalues real. Thus let $\lambda \in \mathbb{C}$ be an eigenvalue of C^TBC, i.e.,

$$C^TBCx = \lambda x$$

holds for some $0 \neq x \in \mathbb{C}^n$ which can be normalized so that $x^*x = 1$, where x^* denotes the conjugate transpose. Premultiplying (0.1) by x^* yields

$$\lambda = x^*C^TBCx = y^*By = \sum_{ij} B_{ij}y_i^*y_j,$$

where $y = Cx \in \mathbb{C}^n$, and consequently

$$\lambda = \sum_i B_{ii}|y_i|^2 + \sum_{i<j} (B_{ij}y_i^*y_j + B_{ji}y_j^*y_i) = \sum_i B_{ii}|y_i|^2 + \sum_{i<j} B_{ij}(y_i^*y_j + y_j^*y_i).$$

(0.2)

Because

$$(y_i^*y_j + y_j^*y_i)^* = y_i^*y_j + y_j^*y_i,$$

the number $y_i^*y_j + y_j^*y_i$, being equal to its complex conjugate, is real and this in the light of (0.2) means that λ is also real.

(b) If B is positive semidefinite then by the part (a) above BA has all eigenvalues real and thus the same holds for AB whose spectrum equals to that of BA. \qed

To show that Theorem 2 is indeed a generalization of Theorem 1, let us decompose a given symmetric matrix A as $A = AI$ where I is the identity matrix, then the assumption of Theorem 2 are met which implies that all eigenvalues of A are real.

Finally we describe a way how to generate generally nonsymmetric matrices having real eigenvalues only.

Theorem 3. For any $A, B \in \mathbb{R}^{n \times n}$, the matrices

$$A^TAB^T$$

and

$$A^T(A+B^T)$$

have all eigenvalues real.
Proof. This follows immediately from Theorem 2 since $A^T A$ is symmetric positive semidefinite, and $B^T B$ and $B + B^T$ are symmetric. \qed
Bibliography
