Contents

Contents ... V
List of Contributors .. VII

Alefeld, G., Rohn, J., Rump, S., Yamamoto, T.
Introduction ... 1

Albrecht, R.
Topological Concepts for Hierarchies of Variables, Types and Controls 3

Alefeld, G., Kreinovich, V. and Mayer, G.
Modifications of the Oettli–Prager Theorem with Application to the
Eigenvalue Problem .. 11

Corless, R.
Symbolic-Numeric Algorithms for Polynomials: Some Recent Results 21

Cuyt, A.
Symbolic-Numeric QD-Algorithms with Applications in Function Theory
and Linear Algebra .. 35

Decker, Th. and Krandick, W.
On the Ineffectiveness of the Parallel Descartes Method 55

Emiris, I. Z.
Matrix Methods for Solving Algebraic Systems 69

Frommer, A.
A Feasibility Result for Interval Gaussian Elimination Relying on Graph
Structure .. 79

Garloff, J. and Smith, A. P.
Solution of Systems of Polynomial Equations by Using Bernstein
Expansion .. 87

Gay, D. M.
Symbolic-Algebraic Computations in Modeling Language for Mathe-
matical Programming ... 99

Heckmann, R.
Translation of Taylor Series into LFT Expansions 107

Jansson, Chr.
Quasi Convex-Concave Extensions .. 117
Kapur, D.
Rewriting, Induction and Decision Procedures: A Case Study of
Presburger Arithmetic .. 129

Lang, B.
Derivative-Based Subdivision in Multi-dimensional Verified Gaussian
Quadrature .. 145

Mayer, G. and Warnke, I.
On the Shape of the Fixed Points of $|f(z)| = |A||z| + |b|$... 153

Mehlhorn, K. and Schirra, S.
Exact Computation with leda.real - Theory and Geometric Applications .. 163

Minamoto, T.
Numerical Verification Method for Solutions of Nonlinear Hyperbolic
Equations .. 173

Neher, M.
Geometric Series Bounds for the Local Errors of Taylor Methods for
Linear n-th-Order ODEs .. 183

Plum, M.
Safe Numerical Error Bounds for Solutions of Nonlinear Elliptic
Boundary Value Problems .. 195

Rump, S.
Fast Verification Algorithms in MATLAB 209

Schäfer, U.
The Linear Complementarity Problem with Interval Data 227

Shakhno, S.
Some Numerical Methods for Nonlinear Least Squares Problems 235

Yamamoto, T.
A New Insight of the Shortley-Weller Approximation for Dirichlet
Problems .. 245

Zemke, J.
How Orthogonality is Lost in Krylov Methods 255

VI
Introduction

The usual "implementation" of real numbers as floating point numbers on existing computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly.

For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estimated using theoretical concepts like the condition number of a matrix for example. Therefore the error bounds are not really available in practice since their computation requires more or less the exact solution of the original problem.

During the last years research in different areas has been intensified in order to overcome these problems. As a result applications to different concrete problems were obtained.

The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arithmetic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems.

At the Imperial College in London was introduced a simple principle for "exact arithmetic with real numbers" (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented.

Using symbolic-algebraic methods the solution of a given problem can be computed exactly. These methods are applied successfully in many fields. However, for large problems the computing time may become prohibitive.

Another possibility is offered by so-called verification methods. These methods give correct results using only floating point arithmetic. Error bounds are computed by a sophisticated combination of error estimators. This idea allows to attack even larger problems without loosing too much time in comparison to traditional methods (without verification).

During the last few years it was already started to combine symbolic-algebraic methods and verification methods to so-called hybrid methods.

Scientists in different fields are working today on the outlined subjects. It was the purpose of a Dagstuhl seminar (with the same title as this book) at the Forschungszentrum für Informatik, Schloß Dagstuhl, Germany, to bring together colleagues from Computer Science, Computer Algebra, Numerical Mathematics, Matrix- and NP-theory, Control Theory and similar fields for exchanging the latest results of research and ideas.

This book contains (in alphabetical order) a collection of worked-out talks
presented during this seminar. All contributions have been refereed. We are thankful to the authors for submitting their papers and to the referees for assisting us.

We would like to express our warmest thanks to Professor Dr. Reinhard Wilhelm for giving us the opportunity to run this seminar in Dagstuhl and to the whole crew of Schloß Dagstuhl for presenting a very nice atmosphere which let all participants feel like at home.

Finally we are thankful to Springer-Verlag, Vienna, for publishing the papers in its Springer Mathematics series.

G. Alefeld, Karlsruhe
J. Rohn, Prague
S. M. Rump, Hamburg
T. Yamamoto, Matsuyama

July 2000